Double Inertia Weight-Based Particle Swarm Optimization

CHE-NAN, KUO and CHING-MING, LAI and YU-HUEI, CHENG (2015) Double Inertia Weight-Based Particle Swarm Optimization. In: Third International Conference on Advances in Applied Science and Environmental Technology - ASET 2015, 28-29 december, 2015, Bangkok, Thailand.

20160109_103528.pdf - Published Version

Download (751kB) | Preview
Official URL:


Particle swarm optimization (PSO) is a well-known and popular swarm intelligence algorithm. The inertia weight of a PSO plays the crucial role in the ability of exploration and exploitation. Many strategies for adapting the inertia weight of PSO have been proposed. In this study, we use two inertia weights to improve the global and local search of PSO. Nine benchmark functions with 10 dimensions for unimodal functions, multimodal functions with many local optima, and multimodal functions with a few local optima is used as the test functions. We compare two inertia weight PSOs with the proposed method. The results show the proposed method is useful for improve the search ability of PSO.

Item Type: Conference or Workshop Item (Paper)
Uncontrolled Keywords: benchmark functions, double inertia weight,particle swarm optimization (PSO)
Depositing User: Mr. John Steve
Date Deposited: 03 Apr 2019 11:54
Last Modified: 03 Apr 2019 11:54

Actions (login required)

View Item View Item