Synthesis of Nanoparticles by Metallic Catalyzed-blast Technology

CHAO-CHIN, CHAN and MING-ZEN, CHANG and YEUH-HUI, LIN and YI-QI, HUANG (2015) Synthesis of Nanoparticles by Metallic Catalyzed-blast Technology. In: Third International Conference on Advances in Applied Science and Environmental Technology - ASET 2015, 28-29 December, 2015, Bangkok, Thailand.

[img]
Preview
Text
20160109_111705.pdf - Published Version

Download (571kB) | Preview
Official URL: https://www.seekdl.org/conferences/paper/details/7...

Abstract

Since the discovery of carbon nanostructures, this kind of carbon nanoparticles (CNPs) have attracted extensive attention due to their novel properties and potential applications such as in high-performing nano-materials, nanoelectronics, high-efficiency energy storage, cold field emitter. Carbon nanoparticles have been successfully synthesized by a self-heating detonation process using an energetic explosive of RDX to provide the need of high temperatures, high shock waves, and parts of carbon sources in the presence of various metalliccontaining catalysts. The products of carbon nanotubes and nano-scale catalyst particles are characterized by XRD, EDX and TEM techniques. The systematic experiments carried out indicate that catalysts can be selected to improve the yield of CNPs in the product distributions. These data experimentally show that it is possible for a cheaper process to produce CNPs under catalytic detonation conditions used in this study. The systematic experiments carried out indicate that mixture of RDX/Zr(Ac)4 as a molecular precursor can be employed to produce metal Zr core-shell nanoparticles encapsulated in concentric layers of graphitic carbon. Various pure carbon or metal nanostructures can be simply obtained from the detonation of the desired molecular precursors. The approach used in this study involving bottom-up nanotechnology is universal and lowcost, and especially it has the potential ability to convert waste explosives to form highly valuable materials, as well as providing the suitable alternatives to reuse the energetic explosive further.

Item Type: Conference or Workshop Item (Paper)
Uncontrolled Keywords: Carbon Nanoparticles, Blast, Explosive
Depositing User: Mr. John Steve
Date Deposited: 03 Apr 2019 11:55
Last Modified: 03 Apr 2019 11:55
URI: http://publications.theired.org/id/eprint/1114

Actions (login required)

View Item View Item