Kinematics Analysis and Simulation of a Rocker- Bogie Mobile Robot

IMAN, DASHTI and MOHAMMAD, REZA ELHAMI (2015) Kinematics Analysis and Simulation of a Rocker- Bogie Mobile Robot. In: International Conference on Advances in Civil, Structural and Mechanical Engineering - ACSM 2015, 21 - 22 February 2015, Hotel Lebua at State Tower.

20150309_084608.pdf - Published Version

Download (837kB) | Preview
Official URL:


For a wheeled mobile robot in rough terrain, one of the known suspension systems is the rocker-bogie mechanism. The high mobility of the robot, moving in 3 dimensions with 6 degrees of freedom makes the kinematics modelling as a challenging task. In this paper, a full 6-DOF kinematic model of a rocker-bogie mobile robot is presented. The A matrices has been derived based on Denavit-Hartenberg coordinate transformation approach. The kinematic equations and Jacobian matrices for the wheels are derived which relates the rover velocity vector with wheel angular velocities and joint angular rates. Furthermore, a rover-terrain model is developed to obtain the necessary joint angles and some attitude angles by solving nonlinear optimization equations. Finally, the robot model is also constructed in MD Adams and simulations are carried out to verify the kinematics model. The results show very close match of kinematic model and simulation in rough terrain trajectory.

Item Type: Conference or Workshop Item (Paper)
Uncontrolled Keywords: Mobile robot, Rocker-Bogie, Kinematic analysis, Rough terrain
Depositing User: Mr. John Steve
Date Deposited: 09 May 2019 11:03
Last Modified: 09 May 2019 11:03

Actions (login required)

View Item View Item